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In an effort to develop a Standard
Reference Material (SRM™) for Seebeck
coefficient, we have conducted a
round-robin measurement survey of two
candidate materials—undoped Bi2Te3 and
Constantan (55 % Cu and 45 % Ni alloy).
Measurements were performed in two
rounds by twelve laboratories involved in
active thermoelectric research using a
number of different commercial and
custom-built measurement systems and
techniques. In this paper we report the
detailed statistical analyses on the
interlaboratory measurement results and
the statistical methodology for analysis of
irregularly sampled measurement curves in
the interlaboratory study setting. Based on
these results, we have selected Bi2Te3 as
the prototype standard material. Once
available, this SRM will be useful for
future interlaboratory data comparison and
instrument calibrations.
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1. Introduction

Thermoelectricity is the study of the direct conver-
sion between thermal and electrical energy through the
Seebeck and Peltier effects. In the Seebeck effect, a
potential difference arises when a junction between two
dissimilar conductors is heated or cooled [1].the
Seebeck effect can be used for power generation appli-
cations. Conversely, when a current passes through the
junction between two dissimilar conductors, heat is
absorbed or expelled at the junction depending on the
direction of current flow. This is known as the Peltier
effect and can be used for electronic refrigeration [2].

Seebeck coefficient (α) is defined as the voltage (V)
generated per degree of temperature difference between
two points (α = ΔV/ΔT). The Seebeck effect has been
used by NASA to supply power for deep space probes
in its radioisotope thermoelectric generators (RTGs)
and is of current interest to automobile manufacturers
to supply additional power through waste heat recov-
ery. RTGs have provided long term reliability with
some deep space probes approaching three decades of
constant operation. The Peltier effect can be used for
electronics spot cooling of computer processors and has
widely been used to thermally manage optoelectronic
devices such as communication lasers and infra-red
detectors. A more common use is in portable
heaters/coolers that can be purchased inexpensively at
many local stores. While wider use of thermoelectrics
in more mainstream applications holds great promise
because of their high reliability and environmental
friendliness, the low efficiency with which they operate
has restricted their usage. Recently, there has been a
resurgence of activity in this field to find novel materi-
als that can operate with higher efficiency to provide
alternative power generation options and competition
with conventional refrigeration technology.

The efficiency of a thermoelectric material is direct-
ly related to the thermoelectric figure of merit ZT given
by α2σT/κ where σ is the electrical conductivity, κ is
the thermal conductivity, and T is the absolute temper-
ature. The current state of the art thermoelectric
materials from the (Bi1–XSbX) 2 (Te1–YSeY)3, Bi1–XSbX,
Si1–XGeX, and PbTe systems all have maximum ZT
values of around 1 at their respective optimum temper-
atures. Although this value has been the maximum for
over 40 years, there exists no theoretical reason for this
to be absolute limit [3]. Several recent reports have
indicated that much higher ZTs are possible both in thin
film superlattices [4] and in bulk materials [5]. A ZT of
3 to 4 would indicate an efficiency great enough to
allow direct competition with conventional refrigera-

tion devices [6]. While full evaluation of a material
requires measurement of the electrical resistivity or
conductivity, Seebeck coefficient and thermal conduc-
tivity, measurement of just the Seebeck coefficient can
filter out those materials which do not have the desired
thermoelectric properties. There exists a minimum
Seebeck coefficient that must be achieved to give a
desired ZT. If this Seebeck coefficient is not achieved,
the material does not warrant further study as the other
properties can not overcome a deficiency in the
Seebeck coefficient. For ZT = 1, the Seebeck coeffi-
cient must be ≥ 157 μV/K; for ZT = 2, the Seebeck
coefficient must be ≥ 222 μV/K. The derivation of this
minimum Seebeck coefficient assumes the ideal case in
which the lattice thermal conductivity is zero. Because
the lattice thermal conductivity will not be zero in any
real system, the actual Seebeck coefficient must be
somewhat higher [7].

One of the needs that persist in this research field is
that of a Seebeck coefficient standard reference materi-
al (SRM) to help ensure reliable measurements and
characterization. Researchers building measurement
equipment need to be able to calibrate their systems to
known values in order to ensure consistency with
different equipment in other laboratories. Numerous
laboratories perform thermoelectric materials charac-
terization through measurement of the electrical resis-
tivity or conductivity, thermal conductivity, and
Seebeck coefficient. These required measurements are
demanding, especially the thermal conductivity meas-
urements; however, one of the most important initial
measurements is that of the Seebeck coefficient due to
the minimum requirements. Standard reference materi-
als exist for thermal conductivity and electrical conduc-
tivity, and there are reliable low Seebeck coefficient
materials such as Pb or Pt; however, there is no high
Seebeck coefficient SRM [8].

1.1 National Institute of Standards and Technology
(NIST) and Thermoelectrics

Research efforts at NIST are guided by the NIST
mission and vision statements. The NIST mission is
“to promote U.S. innovation and industrial competitive-
ness by advancing measurement science, standards, and
technology in ways that enhance economic security and
improve quality of life.” The NIST vision is “to be the
global leader in measurement and enabling technology,
delivering outstanding value to the nation.”

With respect to the thermoelectric research commu-
nity, the NIST mission and vision can be applied in two
areas. First, NIST can help develop the metrology of
thermoelectric measurements. A number of excellent
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thermoelectric measurement techniques are currently in
use by the research community. However, these can be
improved and new measurement techniques developed.
Second, NIST can provide guidance and objectivity in
measurements. This can be accomplished through
development of standardized measurement procedures
and methodologies, objective testing of results, uncer-
tainty assessment, and development of standard refer-
ence materials.

The NIST Standard Reference Material (SRM) pro-
gram currently offers over 1100 SRMs which are used
for a variety of purposes such as instrument calibrations,
accuracy verification, and new measurement techniques
development. However, the program has not previousy
looked at thermoelectric materials. As mentioned previ-
ously, full characterization of a thermoelectric material
requires measurement of the Seebeck coefficient, electri-
cal resistivity, and thermal conductivity, usually as a
function of temperature. SRMs are currently available
for the electrical resistivity and thermal conductivity.
These are SRM 8420/8421 (electrolytic iron) and
SRM 8424/8426 (graphite). Except for the electrical
resistivity of graphite, the range of values covered by
these SRMs is not typical of thermoelectric materials and
hence not appropriate to calibration of measurement
equipment used in the field. While these SRMs are not
ideal, they do at least exist. There is no SRM for the
Seebeck coefficient however. This is a void that needs to
be filled as it is much needed by the thermoelectric
research community.

1.2 Thermoelectric SRM Requirements
A number of aspects had to be considered when devel-

oping the Seebeck SRM. First, the material had to
possess long-term stability. In addition, the material
should be homogeneous and be able to be produced in a
large consistent batch. This is because of the time and
cost which would be required to individually certify each
individual sample. Rather, a large homogeneous batch
would allow for measurements of representative samples
to provide data indicative of the whole batch. Second,
the SRM had to be certified over a broad temperature
range as most researchers in this field perform tempera-
ture dependent measurements. Measurements are usual-
ly divided into the low temperature regime (< 300 K)
and high temperature regime (> 400 K). Thermoelectric
research is active in both temperature regimes making
SRMs needed for both. While there is normally some
overlap between these regimes, they typically require
different measurement equipment. Because of this, we
determined that this SRM would be focused on one
temperature regime. Third, it is important that the SRM

possess a Seebeck coefficient that has magnitude on
the order of that typically measured in the field.
These values should be somewhere from 25 μV/K to
400 μV/K. Somewhere in the middle of this range would
be ideal. Fourth, the SRM should be available at a rea-
sonable price to the community; therefore the develop-
ment and production must be cost-effective. Also, there
should be sufficient demand for the SRM which in turn
has an impact on the price. Fifth, as we consider devel-
opment of the SRM, some thought must be given to
future SRMs. It might be possible to use the same
material for future thermoelectric-related SRMs if
chosen properly. Future SRMs could be produced over a
broader or different temperature range, for different
properties or for ZT, or for other sample geometries such
as thin film.

2. Round-Robin Measurement Survey1

We initiated a measurement survey to determine the
feasibility of producing the SRM, the consistency of the
candidate materials, and the best measurement technique
for providing the standard data. Two candidate materials
were chosen. Constantan is well known as a simple alloy
(55 % Cu/45 % Ni) commonly used in thermocouples
with a moderate Seebeck coefficient at room tempera-
ture. Cylindrical samples (6.47 mm long by 3.45 mm
diameter) were purchased from Concept Alloys. Bi2Te3

is a state of the art thermoelectric material with a high
Seebeck coefficient at room temperature. Undoped
samples were obtained from Marlow Industries in a
rectangular shape (6.08 mm long by 3.04 mm square).

Although standards are needed in both the low and
high temperature regimes, for this SRM we decided to
focus on the low temperature range from 10 K to 390 K.
This decision was made because of previous experimen-
tal experience in this temperature regime and the avail-
ability of measurement equipment. While this standard
primarily provides data for the low temperature regime,
it will also provide some overlap with the low end of
high temperature equipment until a standard can be
provided for those temperatures.

A number of laboratories were enlisted to participate
in this survey. These are a mixture of laboratories
involved actively in thermoelectric research and repre-
sent industry, university, and government laboratories
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both domestic and international. These participants and
the primary researcher from each are listed in Table 1.

2.1 Measurement Equipment
A number of measurement systems were used in this

study including both commercial and custom-built
systems. The measurements were carried out with
several different measurement techniques (some systems
were capable of multiple techniques).

2.1.1 Commercial Systems
The Quantum Design Physical Property Measurement

System (PPMS) with Thermal Transport Option (TTO)
is a versatile system which can measure the Seebeck
coefficient from 2 K to 400 K in several different modes,
each of which was used in this study. Samples can be
mounted in either a 2 or 4-probe configuration, and
measurements can be performed with a stable sample
temperature or dynamic sample temperature (usually
≤ 0.5 K/min). The dynamic measurements continuously
monitor the ΔT and ΔV along the sample while supply-
ing a heat pulse to one end and slowly varying the
sample temperature. This approach gives the ability to
measure the Seebeck coefficient as a function of temper-
ature without having to wait for stability and data
collection at each temperature. The steady-state values
for ΔT and ΔV are found by extrapolating the data from
a relatively short heat pulse. This system prefers a
sample geometry such that the thermal conductance at
300 K is between 1-5 mW/K for 2-probe measurements. 

Bar- or disc-shaped, gold-plated, copper contact leads
were used and attached to the sample with either solder
or silver epoxy (EpoTek H20E). The versatility of this
system also allows for integrating 3rd party electronics
and/or software to perform custom measurements. One
laboratory provided data using this system with a
Keithley nanovoltmeter to measure the Seebeck voltage
while performing a direct steady-state DC measurement.

The ULVAC RIKO ZEM-2 system performs a steady-
state sweep technique and operates in two modes to
cover different temperature regimes. The cryostat mode
allows measurements from 193 K - 373 K while the
furnace mode allows measurements from room tempera-
ture to 1273 K. This system prefers samples 13 mm or
longer while at least 8 mm of length is recommended by
the vendor. Using samples shorter than this length intro-
duces error due to smaller probe spacing and temperature
difference. The samples in this study were only 6 mm
long and required extenders to span the length not cov-
ered by the sample. A 4-probe measurement geometry
was used with chromel or platinum lead wires attached
to the ends of the samples and Type K (Type M8 and L)
or R(Type M10) thermocouple probes attached to the
sides. In this steady-state sweep technique, the sample
was held at a constant temperature while one end of
the sample was heated to produce a constant tempera-
ture gradient. The temperature and voltage difference
between the thermocouple probes was measured. The
next temperature diference value was attained, and
measurements were repeated. After all temperature
difference setpoints at a particular sample temperature
were covered, the slope of the voltage difference (ΔV) vs
temperature difference (ΔT) gave the Seebeck coefficient
at that sample temperature. After this, the sample tem-
perature was changed, and the measurement was
repeated.

2.1.2 Custom Systems
Three laboratories used systems which allowed for

measurements over a broad temperature range covering
much of the target range for this study. Each of these
employed different measurement techniques and sample
mounting, however.

The first system used a steady-state sweep technique
in which the sample was held at a constant temperature
and the ΔT was slowly ramped through a range of values
while monitoring the ΔV. The data was linearly fit, and
the slope yielded the Seebeck coefficient. A small resis-
tor was epoxied to the top of the sample, and the oppo-
site end was soldered to a heat sink. Two differential
thermocouple contacts were made to the sides of the 
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Table 1. Round-robin measurement survey participants

Primary Researcher Laboratory

Neil Dilley Quantum Design
Norbert Elsner Hi-Z Technology
Tim Hogan Michigan State University
Qiang Li Brookhaven National Laboratory
Nathan Lowhorn National Institute of Standards

and Technology
George Nolas University of South Florida
Haruhiko Obara National Institute of Advanced

Industrial Science and
Technology—Japan

Jeffrey Sharp Marlow Industries
Terry Tritt Clemson University
Rama Venkatasubramanian RTI International
Rhonda Willigan United Technologies
Jihui Yang General Motors



sample for measuring the ΔT, and a thermocouple
epoxied between the differential thermocouple contacts
measured the average sample temperature.

The second system used a 4-probe configuration in
which current was pulsed through a small platinum
heater resistor on one end of the sample to generate the
ΔT. The other end of the sample was attached to the
probe using solder or silver paste. Silver paste was used
to attach type-E thermocouples to the sample to
measure the ΔT.

The third system used a pseudo-steady-state tech-
nique in which a constant ΔT was applied along the
sample, and measurements of the ΔV were made as the
sample temperature was slowly changed (≤ 1 K/min).
A smaller ΔT calculated from a percentage of the
sample temperature was used as the temperature was
decreased. Samples were soldered between 2 copper
blocks which acted as voltage probes for measuring the
ΔV. The junctions of a differential thermocouple were
embedded in the copper blocks to measure the ΔT.

The other systems only measured at or near room
temperature. Three of these used a simple ΔT sweep
technique but had sight sample mounting variations. In
the first technique, copper end caps were soldered to
the ends of the sample, and each cap included a copper
wire and a 3 mil Type T thermocouple. One end of the
system was thermally sunk to a thermoelectric cooler
to provide basic sample temperature control. In the
second technique, samples were mounted between 2
copper blocks and partially exposed above the blocks.
To the exposed parts, voltage and thermocouple probes
were attached. Cartridge heaters were embedded in
each block to control the ΔT. Two measurements were
performed at each temperature with reversed thermo-
couples to account for thermocouple variations. The
sample was slowly swept through a range of ΔT values
which centered on the temperature being measured. In
the third technique, samples were clamped between
two clean copper blocks each embedded with a heater
and thermocouple. The blocks were held at different
temperatures and ramped slowly through different ΔT
values while the ΔV was recorded. A linear fit to the
data gave the Seebeck coefficient.

One of the other systems used a basic single point
measurement. Samples were mounted between 2 nickel-
plated copper blocks held at different temperatures to
produce a ΔT along the sample. The ΔV between the
2 blocks was measured and divided by the ΔT to give
the Seebeck coefficient.

The last system used a Harman technique in which a
ΔT was produced along the sample by means of the
Peltier effect when a current was passed through the
sample. After stabilization, the current was switched
off; and the ohmic and Seebeck voltages were separat-
ed from the total voltage. Measurements were repeated
using opposite current sense to account for thermo-
couple differences and voltmeter offsets.

2.2 Round-Robin Procedure
The measurements were conducted in two rounds to

allow each sample to be measured by 2 different
laboratories and provide a good amount of comparative
data while working within the time constraints of the
project and the participants. The ideal situation would
be where each sample is measured by all laboratories.
However, due to the nature of these measurements, this
would require an extreme time commitment by each
laboratory and would greatly lengthen the SRM project
as a whole. This was not practical. The procedure we
used allowed each measurement technique to be per-
formed on 2 different samples and for each sample to
be measured by 2 different laboratories. Also, multiple
samples were measured at NIST using one technique to
provide additional sample consistency data.

Two samples of each candidate material were sent to
each laboratory. One sample of each was to be meas-
ured while the other served as a backup. Some labora-
tories provided data on both samples. Each laboratory
was asked to perform a minimum of 2 measurements
on each sample and more if necessary to provide confi-
dence in the final data. Also, each laboratory was asked
to use their normal techniques and multiple techniques
if available and if time allowed.

The measured samples were then sent back to NIST
where they were randomly assigned to a different
laboratory for the second round of measurements.
Other switching arrangements were discussed and
considered at length. We considered hand selecting
some of the switching to insure certain comparisons
would be made between specific laboratories and their
measurement techniques. In the end, however, it was
decided it would be better to allow switching to be
fully random so that the broadest number of compar-
isons would be possible. The samples were then sent
out to the laboratories again for the second round of
measurements.
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3. Measurement Data and Parametric
Representation

There are issues which present difficulty when analyz-
ing and combining measurement data curves from
different measurements, laboratories, or techniques.
First, the data covers different temperature ranges with
different numbers of sampling points or data density.
We assign numerical labels 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
for the 10 laboratories whose data are accepted, and we
use decimal points within each interval to represent
the different datasets from a particular laboratory. The 

temperature sampling points for all measurement data 
are shown in Fig. 1 for Constantan and Fig. 2 for
Bi2Te3. Each color/numeric label represents all the data 
from a particular laboratory. It is seen that the tempera-
ture range and density of each measurement data set
differs greatly between laboratories, and even within
the same laboratory. These variations cause difficulty
when comparing and combining the different measure-
ments. We use a parametric model for the measurement
curves in order to interpolate and to analyze multiple
curves.
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Fig. 1. Density of temperature measurement data for material Constantan. The y-axis represents the numerical labels assigned to the
9 out of 12 laboratories as shown in Table 1, and the decimal points represent different datasets from the given laboratory. The tem-
perature unit is Kelvin (K). The same color and numeric label are used for all data from each particular laboratory.



3.1 Parametric Interpolating Model

In order to analyze the variability in the irregularly
and sparsely sampled measurement data, we first enter-
tain data representation through parametric models via
multiple regression analysis [9]. We imagine each indi-
vidual measurement data set from one of the m labora-
tories consists of

(1)

where yij (tijk ) denotes the measurements at temperature
points tijk by the jth measurement set within the ith
laboratory, and f0 (tik ) is the common (true) curve eval-
uated at tijk . The measurement errors (including inter-
polation, laboratory, and sample variability, etc.) and 
lack of fit error due to the use of a parametric model are
summarized by the residual error term eij (tijk ) which is
assumed to have a normal distribution N(0, σij

2(tijk ))

where σij
2(tijk ) should include the parametric model

error for the jth measurement of the ith laboratory. We
use a parametric model for fij (tijk ). The purpose of the
model is to adequately approximate the data with a
parametric form; there is no physical meaning associat-
ed with the parameters. The benefit is to have a set of
finite-dimensional parameters as a proxy summary of
individual measurement curves.

Applying (1), we identified a multiple linear regres-
sion model [10] which seemed to fit the available
measured data set very well (see also comments in
Sec. 6).

(2)

where yij (tijk ) is the measured Seebeck coefficient
(μV/K) at temperature tijk (Kelvin). The vector aij =
(aij0, aij1, aij2, aij3, aij4 )T represents the parameterization
of the measured curve.
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Fig. 2. Density of temperature measurement data for material Bi2Te3. The y-axis represents the numerical labels
assigned to the 10 out of 12 laboratories as shown in Table 1, and the decimal points represent different datasets
from the given laboratory. The temperature unit is Kelvin (K). The same color and numeric label are used for all
data from each particular laboratory.
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3.2 Parameter Estimation
To estimate the parameters in Eq. (2) for each data

set, the standard least squares method used in our earli-
er work [10] can be improved due to the instability
in the least squares estimator when the measured
temperature points are few or limited in a small range.
Let X denote the n × p design matrix consisting of
5 columns defined by the regression terms in (2) and
rows which are evaluated at each sampling point. Let Y
denote the Seebeck coefficient response vector. The
least squares estimator is given by

(3)

The problem with the standard least squares method
applying to (2) is that X TX is near singular when the
sample size is small or the temperature measurement
range is narrow. As a consequence, the estimated
parameters can be highly variable and unstable; and the
uncertainties associated with the estimated parameters
are extremely large. To alleviate the problem one can
use the Ridge regression method [11] by introduction
of smoothing parameter k to stabilize the inverse
computation given by

(4)

If we denote the singular value decomposition of X by
X = UDV T, then X T X = VD 2V T,

(5)

(6)

Also, if we denote A(k) = UD(D2 + kI )–1 DU T, then
YR = A(k)Y .

The choice of k requires careful considerations. A
large k reduces the variance in the resulting estimator
while incurring potentially large bias. We try to select k
that gives a stable estimator and has negligible bias. A
formal procedure for choosing k is based on the
Generalized Cross-validation criterion [12] by mini-
mizing the prediction variance

(7)

In practice, we find that the smallest k among the
feasible values is always preferred. This indicates that
our chosen estimators are close to those given by
using the generalized inverses. If we let X + denote
the Moore-Penrose inverse of a matrix X, then X + =
(X TX)+X T; and X + satisfies the following conditions
[13]:

(8)

(9)

If X = UDV T, then X + = VD +U T where D + is the trans-
pose of D whose positive singular values are replaced
by their reciprocals. When k → 0, the Ridge regression
estimator in (4) converges to the Moore-Penrose gener-
alized inverse estimator given by:

(10)

The estimator is a least squares solution to the follow-
ing problem: its norm ||β || 2 is minimized among all
vectors β for which

(11)

is minimized. The corresponding fitted regression line
is given by

(12)

(13)

where we assume Cov (Y ) = σ 2 I. Note that the Ridge
regression estimator may be biased. A useful notion is
estimable function (or linear combination of para-
meters) for which there exists unbiased estimate based
on linear combination of data. This is the essence of the 
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theory of the Gauss-Markov model and for estimable
functions there are simplifying expressions for uncer-
tainty analysis [14].

The adequacy and validity of the parametric model
as an approximate representation of the measurement
data curves can be checked via comparison to the non-

parametric model results using the locally weighted
regression (LOWESS), which is available in S-plus2

and other statistical softwares [15, 16].
If we accept that Eq. (2) provides an adequate re-

presentation of measurement data curves across differ-
ent samples and laboratories, see Fig. 3 and Fig. 4,
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2 S-plus is a trademark of Insightful Corporation. Mention of a soft-
ware product in this paper is only to illustrate and to make explicit
the statistical procedures used in our data analysis, and does not
imply in anyway the endorsements of NIST.

Fig. 3. Fitted measurement curves by laboratory on the Constantan material.

Fig. 4. Fitted measurement curves by laboratory on the Bi2Te3 material.



the question arises as how much meaning can be
attached to the parameters and how much the variabili-
ty in parameter estimates can account for the measure-
ment variability across samples or laboratories. Two
measurement data curves may have different represen-
tation with vastly different coefficients due to the dif-
ference in measurement data range and due to instabil-
ity from under-sampling and over-parameterization
within the data range. The data range is likely the result
of different measurement equipment used. When the
number of sampling points is small or when the meas-
ured data points do not support the complexity of the
presumed model, the Ridge regression approach
becomes a preferred one to use over the standard least
squares method. The lack of parameter identifiability or
parameter redundancy is a well-known problem in
nonlinear regression [17, 18] and can be caused by the
intrinsic nature of parameterization in nonlinear repre-
sentations. Because of this, our view is to use the para-
metric representation as an interpolation tool only; and
it appears that the fitted parameters do not have much
use beyond this data summarization stage.

4. Meta Analysis: Combining Irregularly
Sampled Curves

4.1 Consensus Mean Curve

After we have summarized the irregularly sampled
measurement data curves through a parametric model,
all data among the samples and laboratories can be
compared on the measured data points or through inter-
polations via the parametric fits. The first important
issue is to define the consensus mean curve for a partic-
ular group of measurement curves. The naïve approach
is to use the mean of the fitted regression coefficients
which we call the “mean regression” approach, in
which the regression coefficients from each measure-
ment curve are weighted equally. This approach does
not work well due to vast variability in the parameter
estimates. The second approach is to fit a single model
to all data from that group which we call the “all data
regression” approach. We see that “all data regression”
approach appears to give consistently the most sensible
results. This approach is equivalent to the weighted
vector mean approach in which the regression coeffi-
cient vectors are weighted according to the inverse of
the least squares covariance matrices, Eq. (13) [19].
However, we caution the readers that the regression
coefficient vectors are too heterogenous to be analyzed
using standard statistical procedures such as meta
analysis as those mentioned in the comprehensive

review by Becker and Wu [20]. The reasons are that, in
addition to huge differences in measurement uncertain-
ty in some measurement curves due to limited sampling
points, there are significant differences in measurement
data ranges, and there are substantial between-laborato-
ry differences in the measured temperature points. All
these make the resulting regression coefficients less
comparable, and make direct analysis based on the fit-
ted regression coefficients very difficult. We argue that
the regression coefficients should be treated as a func-
tion of data range as well as sample size and estimation
uncertainty. To avoid the complications, datasets which
have less than 5 data points in the focus range were not
considered, since the fitted model were completely
unreliable or the data were considered unreliable by the
contributing laboratory. This resulted in 55 datasets
being used for Constantan and 114 data sets being used
for Bi2Te3. Thus, when we are comparing and evaluat-
ing the variability of the measurement curves, we focus
on the interpolated measurement curves based on the
fitted regression functions and use interpolated values
when there are no direct measurement data.

4.2 Smooth Variance Estimation and Confidence 
Intervals

Another problem associated with the statistical
analysis of the round robin data is the development of a
confidence band for the consensus mean curve m(t). We
find that the most sensible approach is to first compute
the curves at the desired range using the coefficients of
the parametric model fitted to each data from each lab-
oratory, and then compute the pointwise variance  v(t)as
the mean of the squares of deviations of each curve
from the central curve m(t). The pointwise estimated
functional variance may be very rough, and it can be
smoothed using LOWESS with a small bandwidth (e.g.,
we use f = 0.2, 20 % of local data points in the local fit-
ting). To compute the confidence band, we simply use

confidence intervals (if the uncertainty in the variance
estimate can be ignored). There is an interesting inter-
pretation of the pointwise confidence intervals: if one
treats the two confidence bands as two boundary lines,
and calls any measured or interpolated values on a
curve lying outside the two bounds the exceedances
points, then the percentage of the exceedances as a frac-
tion of the total temperature points summed over all
measurement curves tends to 5 %, so asympototically
the confidence intervals have the desired average spa-
tial coverage probability of 95 %. Similar notion of
confidence intervals is discussed by Wahba [21] who
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also coined the name of Bayesian confidence intervals,
and by Nychka [22] who proved that the pointwise
confidence intervals in the context of a smoothing
spline regression has the required specified average
coverage probability.

5. Statistical Analysis Results

Using the “all data regression” approach and Eq. (2),
we modeled all data for the 2 candidate materials which
gave

(14)

for Constantan and

(15)

for Bi2Te3. These results are plotted in Figs. 3 and 4
respectively with all the data used for the model.

The variability among the measurement curves is
quantified through variance function defined as the
mean of the squares of the deviations of each curve
from the central curve. The variance function can be
very rough at some tempearure range and it is
smoothed out via the LOWESS smoothing function.
The coefficient of variation (CV) at each temperature
point is computed as the standard deviation divided by
the absolute consensus mean value. The CVs as a func-
tion of temperature for both Constantan and Bi2Te3

when the variance function is computed over all the
measurement curves of samples are plotted in Fig. 5.
The standard deviation for Constantan data is increas-
ing as a function of temperature, and CV is nearly con-
stant for temperature above 100 K. For Bi2Te3, the
standard deviation is nearly constant across tempera-
ture. It is seen that the CV for Bi2Te3  is smaller than the
CV for Constantan. Based on the results of our data
analysis, the fact that Bi2Te3 has a larger absolute
Seebeck coefficient value, and also most laboratories
have measurement techniques for the Bi2Te3 at a wide
range of temperature values that we are interested in,
we have selected Bi2Te3 as our candidate Standard
Reference Material (see Sec. 6 for more discussion).
Besides, Bi2Te3 is currently one of the materials being
used by industry for cooling applications.
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Fig. 5. Sample-to-sample measurement uncertainty as a fraction of absolute consensus mean signal (“b” for Bi2Te3; “c” for Constantan).



From Fig. 6 through Fig. 11, we report the
deviations from the consensus mean curve due to
three factors (Sample, Laboratory, or Measurement
Technique) that may affect measurement performance
for each of the two materials, Constantan and Bi2Te3.
The samples were assigned randomly in the first round
and then switched to another laboratory in round two,
so there are typically two or more samples being meas-
ured by each laboratory. Each laboratory was asked to
use their most reliable measurement technique, and
some laboratories may have used up to four techniques
for measurements. In this very exploratory experimen-
tal design set we do not apply rigorous statistical design
involving orthogonality in order to separate the effect
of measurement techniques from the laboratory, there-
fore the effect of laboratory is strongly coupled with the 

techniques being used. The confounding effect with
choice of samples is less of an issue since there were
enough samples being measured and samples were usu-
ally measured twice by two different laboratories. The
outlying measurements seen in Fig. 4 from a single
laboratory (Lab 6) show up also in Figs. 7, 9, and 11.
We believe this is caused by a single laboratory using
measurement technique E, the reasons being that some
of the same samples have been measured by another
laboratory without producing the pronouced deviations.
Overall, we consider our interlaboratory study to be
successful in achieving good agreements in measure-
ments from the volunteering participating laboratories
and in the identification of reliable measurement tech-
niques in the desired wide temperature range which we
are interested in pursuing.
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Fig. 6. Sample bias (deviations from the consensus mean curve, with potential laboratory and technique differ-
ences) for all the samples used in the studies for Constantan.
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Fig. 7. Sample bias (deviations from the consensus mean curve, with potential laboratory and technique differ-
ences) for all the samples used in the studies for Bi2Te3.
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Fig. 8. Laboratory bias (deviations from the consensus mean curve, with potential sample and technique
differences) for Constantan.
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Fig. 9. Laboratory bias (deviations from the consensus mean curve, with potential sample and technique
differences) for Bi2Te3.
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Fig. 10. Measurement technique bias (deviations from the consensus mean curve, with potential laboratory and
sample differences) used in the studies for Constantan.



6. Summary

To summarize, our procedure for statistical analysis
of irregularly sampled measurement curves in the inter-
laboratory study consisted of the following steps.

1) Each measurement data is fitted to a parametric
model Eq. (2). The tuning parameter choice in
the Ridge regression parameter estimation and
goodness of fit are checked through the nonpara-
metric LOWESS models. We arrive at a para-
metric representation of each measurement
curve; and at every temperature point within the
measurement range, the Seebeck coefficient can
be computed based on the fitted model.

2) For measurement performance comparison,
whether it is sample-to-sample, laboratory-to-
laboratory, or technique-to-technique, at a given 

common set of temperature values, we compute 
the predicted Seebeck values on the common
temperature points based on the fitted parametric
model, and then compute the standard deviation
at each temperature point.

3) The common mean for multiple measurements is
given by fitting the parametric model (2) to all
the combined data.

4) The final confidence band is given by the com-
mon mean plus or minus the stanadard deviation
multipled by the coverage factor k = 2, which
gives the 95 % average coverage probability
assuming the normal distribution. The bias of
each measurement is computed as the difference
between the computed measurement point from
the fitted parametric model and that from the
common mean model.
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Fig. 11. Measurement technique bias (deviations from the consensus mean curve, with potential laboratory and
sample differences) used in the studies for Bi2Te3.



Our study offers a few lessons which may be benefi-
cial for future design and analysis of interlaboratory
experiments involving sampled curves and functions.
The significant differences (cf. Fig. 1 and Fig. 2) in the
sampling design from different laboratories and differ-
ent replicates have made analysis based on the para-
meters of an interpolating model unsuitable. We
emphasize that the proposed model (2) is just one of
the many interpolating models that can be used. For
example, we have recently discovered another model in
our latest Seebeck coefficient SRM work,

(16)

which also fits the round robin data well. However, we
should point out that fitting of this model to the round
robin data still presents the same challenges as the lin-
ear terms cannot be reformulated into orthogonal terms
because of the vast differences in the sampling design
of each data set, and orthogonality depends on the
design of data sets. The strong multicollearity in the
less sampled data set makes the use of Ridge regression
necessary, though it is more difficult to compare the
different data sets based on the fitted parameters. That
is the reason why we emphasize that the parametric
model has served our purpose of interpolation within
each data set very well, but the fitted parameters have
no physical meanings and have vast variations across
different data sets. Another important lesson is that, we
have not enforced a good statistical design so that the
confounding effect of measurement technique and lab-
oratory effects may be reduced. In the future when
there are more laboratories who can use multiple tech-
niques, a good choice of experimental design may
become feasible.

Based on the results of the round-robin measurement
survey, Bi2Te3 will be used for the SRM. To this end,
400 units have been purchased from Marlow Industries
with sample dimensions of 8 mm × 3.5 mm × 2.5 mm.
This sample has different dimensions than those used
for the round-robin measurement survey based on feed-
back from the participants. These dimensions allow
more room for 4-probe resistivity measurements while
maintaining an appropriate thermal conductance.

Bi2Te3 will be certified as the SRM at NIST with the
standard data produced using a Quantum Design
Physical Property Measurement System with some
modifications including 3rd party electronics and
custom software. The details of this system and tech-
nique will be discussed elsewhere.
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